
Robot Dynamics with URDF & CasADi

Lill Maria Gjerde Johannessen1, Mathias Hauan Arbo1, and Jan Tommy Gravdahl1

Abstract—Fast, accurate evaluation of the dynamics param-
eters is a key ingredient for accurate control, estimation, and
simulation of robots. As these are time-consuming to compute by
hand, a software library for generating the rigid body dynamics
symbolically can be of great use for robotics researchers. In this
paper, we propose a library to efficiently compute and evaluate
robot dynamics and its derivatives. Based on a URDF description
of the robot’s kinematics, three major rigid body dynamics
algorithms are used to retrieve the dynamics symbolically in
the CasADi framework. To validate the numerical accuracy, the
numerical evaluation of the solutions are compared against three
other well-established rigid body dynamics libraries, namely
RBDL, KDL, and PyBullet. We conduct a timing comparison
between the libraries, and we show that the evaluation times of
the symbolic expressions are at most one order of magnitude
higher than the evaluation times of the numerical libraries. Last,
it is shown that the evaluation times of the dynamics derivatives
remain of the same order as the evaluation times of the dynamics
expressions.

Keywords—Manipulator Dynamics, Robot Kinematics, Robot
Programming.

I. INTRODUCTION

Defining advanced feedback control techniques for robots
requires the use of kinematics and dynamics. Oftentimes
one requires both the forward or inverse mapping and its
derivatives. These can be tedious to compute by hand, and
many symbolic solver systems result in functions that have
long evaluation time, making them impractical for use in
feedback control.

Robotic Operating System (ROS) [1] is a software solution
with a growing community among robotics programmers. ROS
presents a Universal Robot Description Format (URDF), an
XML file describing the robot’s kinematics as a kinematic
tree of frames with inertial, collision, and visual properties.

A library for using symbolic equations that is growing in
popularity among robotics researchers is CasADi [2]. It is
an open-source tool for algorithmic differentiation (AD) and
numerical optimization. This framework provides the ability
to rapidly prototype optimization algorithms and symbolic
equations that are close to production ready.

In this paper, we present urdf2casadi (u2c), a software
library for obtaining functions of the robot’s dynamics that can
be used with symbolic expressions in the CasADi framework,
based on a URDF description of the robot. The library provides
forward and inverse dynamics, as well as the Coriolis and
gravitational terms, and the inertia matrix. The library is

1 Lill Maria Gjerde Johannessen (lmjohann@stud.ntnu.no), Mathias Hauan
Arbo, and Jan Tommy Gravdahl are with the Department of Engineering
Cybernetics, Norwegian University of Science and Technology (NTNU),
Trondheim, Norway.

2 The work reported in this paper is based on activities within centre
for research based innovation SFI Manufacturing in Norway, and is partially
funded by the Research Council of Norway under contract number 237900.

implemented in Python for a cross-platform functionality, and
the functions returned by u2c use CasADi’s autogenerated C-
code to minimize evaluation time.

The library also represents an opportunity to efficiently
obtain the derivatives of the dynamics. In standard approaches
for controlling complex robotic systems, such as trajectory
optimization and optimal control [3, 4, 5], the system dynam-
ics and their derivatives are a crucial part of the optimization
problems. Yet, a large amount of the computational time of
the optimization algorithms [6] is spent on computing these
derivatives.

There are several approaches for evaluating the derivatives.
Finite differences is considered the simplest method, but it
is sensitive to rounding errors [6], and is dependent on fine
parallelization [7, 8]. Further, the manual process of deriving
the derivatives is both complex and error-prone, and the ana-
lytic derivatives are often difficult to optimize and implement
efficiently. By obtaining the dynamics expressions with u2c,
the derivatives are easily obtainable using CasADi‘s built-in
Jacobian functionality. Similar to the use of AutoDiff in [6],
CasADi uses AD to obtain the derivatives, and the method
for calculating the Jacobian involves advanced algorithms
exploiting sparsity and symmetry patterns [2]. The result yields
efficient calculation of derivatives, making them appropriate
for use in robotics research.

A. Rigid Body Dynamics Libraries

Due to its importance in robotics research, there are several
libraries for generating robot dynamics based on a URDF. The
Kinematics and Dynamics Library [9] (KDL) contains special
object types and functions so that one can take a kinematic
chain and evaluate the dynamic parameters, i.e the inertia
matrix, the Coriolis matrix, and the gravitational force. The
routines are real-time safe and implemented in C++.

The Rigid Body Dynamics Library (RBDL) [10] is a C++
library inspired by the algorithms presented in Featherstone‘s
Rigid Body Dynamics Algorithms [11]. RBDL provides for-
ward dynamics, inverse dynamics, and the dynamic parame-
ters.

PyBullet [12] is an open-source collision detection and rigid
body dynamics library, mainly used for physics simulation,
robotics, and deep reinforcement learning. It provides the
inverse dynamics, and the dynamic parameters.

The aforementioned libraries are numerical. This restricts
the user to the built-in function rather than being able to
take as many partial derivatives as necessary for the controller
formulation. However, it is chosen to compare u2c against
these libraries for several reasons. KDL is a well-established
library in the ROS community, PyBullet is widely used within
machine learning, and RBDL is, similar to u2c, implemented



based on [11]. Further, these libraries all provide Python
bindings and URDF loadings, similar to u2c.

B. Rigid Body Dynamics

The dynamics of a multi-body rigid system can be described
by the equation of motion [13]:

τ = M(q)q̈+C(q, q̇)q+G(q)−∑
i

Ji(q)T f ext
i (1)

where M is the inertia matrix giving the relationship between
the generalized joint forces, τ , and the generalized joint
accelerations, q̈. C is the Coriolis matrix, encompassing the
Coriolis effects, and G encompasses the gravitational forces.
For brevity, the dependent variables of M, C, and G are omitted
henceforth and the generalized joints are referred to as joints.

The inverse dynamics (ID) is defined as the joint torques
required for the joints to produce a desired joint acceleration
for a given joint position, velocity, and external forces:

τ = ID(model,q, q̇, q̈, f ext). (2)

Similarly, the forward dynamics (FD) is defined as the joint
acceleration according to a joint position, torque input and
external forces:

q̈ = FD(model,q, q̇,τ, f ext). (3)

u2c provides the forward and inverse dynamics, as well as the
Coriolis matrix, the gravitational effects and the inertia matrix
using three rigid body dynamics algorithms. The recursive
Newton-Euler algorithm (RNEA) is used to obtain the inverse
dynamics, the Coriolis matrix, and the gravitational force.
The articulated body algorithm (ABA) is used to obtain the
forward dynamics, and the composite rigid body algorithm
(CRBA) is used to obtain the inertia matrix. The algorithms
are implemented using spatial algebra, as presented by Feath-
erstone [11].

II. SPATIAL NOTATION

To give insight into the algorithms, this section gives a brief
introduction to spatial vector algebra. Spatial vectors are 6D
vectors that contain the linear and angular characteristics of
rigid body motion and forces. Spatial vector algebra provides a
compact notation to study the dynamics of a multi-body rigid
system. A spatial vector contains the information of two 3D
vectors and thus replace two or more 3D equations. Hence,
dynamics algorithms can be derived quickly and expressed in
a compact form leading to efficient computer code.

1) Spatial Transforms: The placement of an isolated body
Bi with a fixed frame i relative to a world frame 0 is described
by a spatial transform denoted iX0. When dealing with multi-
body rigid systems, one has to consider several bodies con-
nected through joints. The connecting joint thus represents a
constraint for the relative placement between the connection
bodies. This constraint is expressed through a quantity referred
to as the joint motion matrix, denoted Si. When finding the
transform from a child body, denoted λi, to its parent body,
i, one must consider the placement from the parent body to

the connecting joint, XJ , and the placement from the joint to
the child body, XT . The total transform between two bodies
are hence given by iXλi = XJXT . The quantity XT is a fixed
placement given by the robot’s kinematics, while XJ varies
with the joint motion constraint represented by Si.

2) Spatial Inertia: When a rigid body has mass, the spatial
inertia tensor at an origin O is given by:

IO =

(
ĪC +mc× c×T mc×

mc×T m1

)
, (4)

where m is the mass of the body, c is the body’s center of
mass, 1 is the identity matrix, and × represent a spatial cross
product operator, which is further explained in the latter. The
upper left element of the inertia matrix (ĪC +mc× c×T ) is
the rotational inertia of the body around O. An important
advantage of spatial inertia is that if one has to find the total
inertia of several bodies, it becomes the sum of all rigid body
inertias. To illustrate, if two bodies, having inertia I1 and I2,
are rigidly connected and form a composite body, then the
total inertia becomes Itot = I1 + I2.

3) Motion and force vectors: Featherstone [11] distin-
guishes between two groups of spatial vectors, namely motion
vectors and force vectors. Spatial velocity and acceleration
belong to the motion group, and spatial force and momentum
belong to the force group. Quantities of motion vectors are
generally denoted by m and quantities of force vectors are
denoted f . We distinguished between spatial force transforms
and spatial motion transforms such that:

mA = AXBmB, (5)

f = AX∗ f B, (6)

where A and B represent two Cartesian frames, AXB represent
the motion transform, and AX∗B represent the force transform.
The relationship between the motion and force transform is
that one is the inverse transpose of the other:

BX∗A = BX−T
A . (7)

The spatial inertia can be seen as a mapping between the
two groups as the spatial momentum is given by hi = Iivi and
spatial force is given by f i = Iiai + vi×∗ hi. The spatial force
thus correspond to the to the time derivative of the spatial
momentum.

Motion vectors can also operate on both motion and force
vectors through spatial cross product operators. They are
similar to classic time derivatives, and it is distinguished
between spatial motion and force cross products:

ṁ = vA×mB, (8)

ḟ A = vA×∗B f B. (9)

×∗ can be viewed as the dual of ×, and their relationship is
similar to the relationship between X and X∗.

Spatial velocity is defined as the time derivative of the
spatial transform. Thus, the spatial joint velocity, denoted vJ , is



found by taking the derivative of the aforementioned quantity
XJ :

vJ =
∂XJ

∂qi
q̇ = Siq̇i, (10)

where Si is the aforementioned joint motion matrix. Si is
considered time independent for 1-DOF joints.

Last, the joint acceleration is defined as the derivative of
the joint velocity:

aJ i = Siq̈i + Ṡiq̇i

= Siq̈i + vi×Siq̇i

= Siq̈i + vi× vJ i.

(11)

III. RIGID BODY DYNAMICS ALGORITHMS

A. The Recursive Newton-Euler Algorithm

Although various algorithms have been proposed to retrieve
ID, RNEA remains the most efficient, whose complexity is
O(n) with n being the number of bodies of the robotic system.
RNEA was first proposed by [14], and was later renewed by
[11] to exploit the advantages of spatial algebra. Compared
to [11], u2c explicitly calculates model quantities, i.e iXλi ,
Si, Ii, beforehand in a model calculation routine, and iX∗

λi
is found using (7). This accounts for the other algorithm
implementations as well. Algorithm 1 shows the compact
result of using spatial algebra. As can be observed, RNEA is a
two-pass algorithm which propagates the kinematic quantities
in a forward pass, followed by retrieving the joint forces in a
backward pass.

Although RNEA was originally developed to obtain ID, u2c
exploits modifications of RNEA to obtain the Coriolis and
gravitational terms as these are subsets of the inverse dynamics
problem. ID can be viewed as:

ID = RNEA(model,q, q̇, q̈, f ext), (12)

while C and G can be obtained by:

C = RNEA(model,q, q̇,0,0), (13)
G = RNEA(model,q,0,0,0). (14)

Algorithm 1 Recursive Newton-Euler Algorithm

Input: X , S, I
Output: τ

1: v0 = 0
2: a0 =−ag
3: for i = 1 to nB do
4: vi =

iXλivλi +Siq̇i
5: ai =

iXλiaλi +Siq̈i + vi×Siq̇i
6: f i = Iai +vi×∗ Ivi - iX∗

λi
f ext
i

7: end for
8: for i = nB−1 to 0 do
9: τ i = ST

i f i
10: if λi 6= 0 then
11: f λi

= f λi
+ λiX∗i f i

12: end if
13: end for

B. The Articulated Body Algorithm

One of the most efficient algorithms for computing the
forward dynamics is ABA, whose complexity is, similar to
RNEA, O(n). The algorithm was first presented by [15]
although various versions have been proposed since then. ABA
does not rely on computing the inverse of the inertia matrix,
but is generally more complex than RNEA. It is composed
of three main passes, whereas the first pass is a forward
recursion collecting the spatial forces acting on the bodies.
The quantities obtained in the first pass are used to retrieve
the articulated body inertia and the articulated body forces in
a backward pass, followed by obtaining the joint and body
accelerations in a forward recursion.

C. The Composite Rigid Body Algorithm

CRBA is used to compute the inertia matrix. The physical
interpretation of M is that it relates the force acting on each
joint to the acceleration of each joint. By using the definition
of the kinetic energy of each body, while treating the bodies
as composite rigid bodies, the algorithm recursively calculates
each element of the matrix. For further details about CRBA
and ABA, we refer to Featherstone’s Rigid Body Dynamics
Algorithms [11].

CRBA can also be used to solve the forward dynamics
problem. [11] presents the equation of motion for a multi-
body rigid system as:

τ = M(q)q̈+C2(q, q̇, f ext) (15)

where C2 encompasses the Coriolis effects, the gravitational
force, and the effects of external forces, if any. This quantity
can, similar to the Coriolis matrix, be found by a call to
RNEA where q̈ = 0 and the external and gravitational forces
are considered. Thus, FD can be found by solving the equation
for q̈:

q̈ = M−1(τ−C2), (16)

where the dependencies of M and C2 are omitted. It should
also be mentioned that this method for finding FD has a worst
case of O(nd2) with d being the depth of the kinematic tree.
In cases where the kinematic tree contains few bodies, these
algorithms can exceed the speed of O(n)-algorithms. Thus,
this approach has also been implemented in u2c, and both
approaches for FD are evaluated in the next section.

IV. RESULTS

In this section, the performance of u2c with regard to
numerical accuracy, efficiency of evaluating the dynamics
expressions, and its derivatives, are reported. The tests are
performed on a Ubuntu 16.04, 3.5 GHz x 12 Intel Xeon
CPU processor in a Python 2.7 environment, and the -OFast
compiler flag is used for optimization of the generated C-code.
Various robots are used to evaluate the performance: a 2-DOF
pendulum, a 6-DOF UR5, and a 16-DOF snake robot.



TABLE I: Numerical differences between libraries for a 6-
DOF UR5 robot for 1000 random samples.

KDL/u2c RBDL/u2c PyBullet/u2c
G (N) 4.42 ·10−12 1.96 ·10−07 1.83 ·10−03

C (N) 1.03 ·10−11 4.30 ·10−07 3.12 ·10−03

ID (Nm) 4.41 ·10−07 4.12 ·10−03

M (kgm2) 1.40 ·10−12 1.46 ·10−08 2.32 ·10−03

FD (m/s2) 7.88 ·10−07

A. Numerical Results

The numerical results for the UR5, displayed in Table I,
are obtained by generating 1000 samples of configurations,
velocities, and accelerations or torques, uniformly distributed
within the joint limits. The result shows that u2c and KDL
have very similar results, implying a numerical difference
of factor 10−15 for a single sample of M and G. For C,
the numerical difference is one order of magnitude higher.
This increase, from G to C, is due to the extra variable that
has to be considered in the RNEA calculations, namely q̇,
when evaluating C. One can also observe that the numerical
differences between RBDL and u2c, thus also between KDL
and RBDL, is of factor 10−07 and 10−08. This indicates a
numerical difference of at most 10−10 for a single sample,
which can be considered satisfactory. The similarity between
KDL and u2c may be due to more similar data types. Further,
the numerical results imply a numerical difference of 10−06 per
sample, between PyBullet and the remaining libraries, which
may indicate a small inaccuracy for PyBullet. It is speculated
that the error is a matter of single versus double precision
floats, or a floating point cancellation issue. The developers
of PyBullet have been informed about this, but the numerical
difference is negligible in most use cases.

The numerical tests for the 2-DOF pendulum and the 16-
DOF snake [16] yielded the same result as for the 6-DOF
UR5. Hence, one can assume that the numerical accuracy is
independent of the number of DOF.

B. Timing Results

TABLE II: Summary table of number of operations for the
dynamics expressions.

pendulum ur5 snake
G 18 199 224
C 79 648 572

ID 110 696 710
M 34 872 1217

FD (CRBA) 132 2354 14786
FD (ABA) 142 1948 2272

For obtaining the timing results, random configuration, ve-
locity, and acceleration or force vectors are uniformly sampled
within the joint limits. Measurements of 1000 samples are
stored and the median times spent on evaluating the dynamics
are listed in Figure 1. The results show that u2c overall uses
a longer evaluation time compared to PyBullet, RBDL, and

(a) Median evaluation times for pendulum.

(b) Median evaluation times for UR5.

(c) Median evaluation times for snake.

Fig. 1: Median evaluation times for G, C, ID, M, and FD for
PyBullet, RBDL, u2c, and KDL.

KDL. This is a natural consequence of u2c generated functions
supporting symbolic data types, and thus some overhead is
expected. Hence, the functions that only require one symbolic
variable, i.e G and M, have less overhead than the functions
that require two or three symbolic variables.

u2c is at most one order of magnitude slower than the
numerical libraries, which is the case for the 2-DOF pendulum.
While for the 16-DOF snake, u2c and the numerical libraries
yield evaluation times of the same order of magnitude. By
evaluating Table IV and Figure 1, it is clear that the evaluation
times of u2c are mostly affected by the number of symbolic
variables, and are less sensitive to the number of operations
in the expression. To illustrate, ID and FD(aba) encompass
three symbolic variables and are both obtained with O(n)-
algorithms. FD for the snake requires 1562 more operations
than ID. Yet, the difference in evaluation time is only a
few microseconds. Hence, it is reasonable to assume that the
increase in evaluation time from G and M, to C, and up to ID
and FD is mostly due to the additional symbolic variables
required. From Figure 1 it is also seen that the dynamics
expressions with a higher number of symbolic variables are
more affected by an increase in the number of DOF. This
is reasonable as this leads to symbolic vectors with a higher
number of elements.



0 10 20 30 40 50 60
number of DOF

0

10

20

30

40

50

60

70

80
tim

e 
[u

s]
KDL
u2c
RBDL
PyBullet

(a) Median evaluation times for G.

0 10 20 30 40 50 60
number of DOF

0

20

40

60

80

100

120

tim
e 

[u
s]

KDL
u2c
RBDL
PyBullet

(b) Median evaluation times for C.

0 10 20 30 40 50 60
number of DOF

0

20

40

60

80

100

120

140

tim
e 

[u
s]

KDL
u2c
RBDL
PyBullet

(c) Median evaluation times for M.

Fig. 2: Median evaluation times for robots of 1 to 60 DOF.

As a result of the CasADi functions being insensitive to an
increase in number of operations, and thus also to an increase
in DOF, one can observe from Figure 1 that the overall
difference in evaluation time between u2c and the numerical
libraries decreases as the number of DOF increases. Due to
this finding, it was wanted to investigate how the evaluation
times evolved for a higher increase in DOF. Thus, we have
constructed 60 experimental URDFs and the evaluation times
for G, C, and M from 1 DOF to 60 DOF are shown in Figure
2. For G, it is observed that even though u2c starts out as
the library with the slowest evaluation times, it ends up being
faster than KDL and RBDL. Further, one can observe that the
overhead related to an additional variable makes C slower and
more sensitive to an increase in DOF, compared to G. Yet,
u2c still exceeds KDL for robots over 30 DOF and remain
the same order of magnitude as RBDL and PyBullet. For M
it is shown that u2c exceeds KDL for robots over 10 DOF,
and PyBullet for robots over 20 DOF. Hence, we have shown
that for the dynamics functions that only encompass a few
symbolic variables, the total increase in overhead related to
u2c is smaller than the increase in overhead for several of the
numerical libraries. This is partly due to the minimal overhead
related to the increase in operations, provided by CasADi [2].
For ID and FD, the overhead associated with three symbolic
variables prevents u2c from exceeding the numerical libraries,
but the evaluation times remain the same order of magnitude
as the numerical libraries.

C. Derivatives Timing

TABLE III: Summary table of median evaluation times for
dynamics the derivatives with respect to q, q̇, q̈ and τ .

pendulum UR5 snake
derivatives of G 12.63 µs 15.38 µs 23.47 µs
derivatives of C 20.57 µs 29.62 µs 46.78 µs

derivatives of ID 28.91 µs 40.08 µs 67.68 µs
derivatives of M 12.54 µs 17.14 µs 36.72 µs

derivatives of FD (crba) 29.07 µs 48.35 µs 286.73 µs
derivatives of FD (aba) 29.10 µs 50.52 µs 82.48 µs

TABLE IV: Summary table of number of operations for the
dynamics derivatives.

pendulum UR5 snake
derivatives of G 29 881 2347
derivatives of C 239 5157 11792

derivatives of ID 234 4731 16159
derivatives of M 44 4095 11635

derivatives of FD (crba) 378 17764 431178
derivatives of FD (aba) 390 13517 40901

The derivatives are easily obtained using CasADi’s built-in
Jacobian functionality, allowing the user to explicitly define
which variable one wishes to find the derivative with respect
to.

The results, summarized in Table III and Figure 3, show that
the evaluation times of the derivatives are not much longer than



Fig. 3: Median evaluation times of the dynamics and the
dynamics derivatives for a UR5.

the dynamics expressions themselves. Figure 3 displays this
graphically for a UR5. The evaluation times of the derivatives
are the same order of magnitude as the evaluation times of
the derivatives, the only exception being the derivative of FD
using CRBA for the 16-DOF snake as it must invert a very
large inertia matrix.

Table IV shows the number of operations for the dynamics
derivatives expressions. As the dynamics functions and their
related derivative functions contain the same number of sym-
bolic variables, the change in evaluation time can be assumed
to be mainly due to the increase in operations. The evaluation
time of the derivative of G for the UR5 increases with 617
operations, which does not remarkably affect the evaluation
time. FD using CRBA is the method that is most exposed to
an increase in number of operations, as it has a complexity of
O(nd2) and requires three symbolic variables. The derivative
of FD using CRBA for the snake increases with 445647
operations, leading to a 217.81 µs increase in evaluation time.
This indicates 0.49 µs longer evaluation time for an increase of
1000 operations, and substantiates the fact that the evaluation
times of CasADi functions are not heavily affected by an
increase in operations. It is the number of symbolic variables
involved that is most essential in this matter.

V. CONCLUSION

The paper has proposed a software library to efficiently
compute the dynamics expressions of a robot based on a
URDF description of it’s kinematics. To achieve this, we have
combined the CasADi framework with the implementation
of rigid body dynamics algorithms using spatial algebra. By
combining RNEA, ABA, and CRBA, urdf2casadi provides
the inverse and forward dynamics expressions, as well as the
Coriolis and gravitational terms, and the inertia matrix. Our
approach leads to efficient algorithms, resulting in evaluation
times comparable to numerical approaches represented by
KDL, RBDL, and PyBullet.

By extracting the expressions in the CasADi framework,
the dynamics derivatives are easily obtainable using CasADi’s
Jacobian functionality. We have demonstrated that the evalua-
tion times of the dynamics derivatives are of the same order of
magnitude as the evaluation times of the dynamics expressions,
thus making them suitable for use within trajectory optimiza-

tion, optimal control, and other approaches where dynamics
derivatives are needed.

We provide the complete open-source Python implemen-
tation of this library, thus providing a multi-platform, easily
installable library ideal for use in robotics research. More
details can be found in Johannessen [17].

REFERENCES

[1] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating system,”
in Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA)
Workshop on Open Source Robotics, (Kobe, Japan), May 2009.

[2] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, In Press,
2018.

[3] M. H. Arbo, E. I. Grtli, and J. T. Gravdahl, “On model predictive
path following and trajectory tracking for industrial robots,” in 2017
13th IEEE Conference on Automation Science and Engineering (CASE),
pp. 100–105, Aug 2017.

[4] D. Verscheure, M. Diehl, J. De Schutter, and J. Swevers, “On-line
time-optimal path tracking for robots,” in 2009 IEEE International
Conference on Robotics and Automation, pp. 599–605, May 2009.

[5] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[6] J. Carpentier and N. Mansard, “Analytical Derivatives of Rigid Body
Dynamics Algorithms,” in Robotics: Science and Systems (RSS 2018),
(Pittsburgh, United States), June 2018.

[7] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4906–4913, Oct 2012.

[8] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control applied
to the HRP-2 humanoid,” in 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3346–3351, Sep. 2015.

[9] R. Smits, “KDL: Kinematics and Dynamics Library.” http://www.orocos.
org/kdl, 2014. Accessed: 2018-12-10.

[10] M. L. Felis, “RBDL: an efficient rigid-body dynamics library using
recursive algorithms,” Autonomous Robots, pp. 1–17, 2016.

[11] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2008.
[12] E. Coumans and Y. Bai, “PyBullet, a Python module for physics

simulation for games, robotics and machine learning.” http://pybullet.org,
2016–2018. Accessed: 2018-12-9.

[13] B. Siciliano and K. Oussama, Handbook of Robotics. Springer, 2008.
[14] J. Luh, M. Walker, and R. Paul, “Resolved-acceleration control of

mechanical manipulators,” IEEE Transactions on Automatic Control,
vol. 25, pp. 468–474, June 1980.

[15] R. Featherstone, “The Calculation of Robot Dynamics Using
Articulated-Body Inertias,” The International Journal of Robotics Re-
search, vol. 2, no. 1, pp. 13–30, 1983.

[16] I.-L. Borlaug, K. Pettersen, and J. Gravdahl, “Trajectory tracking for
an articulated intervention AUV using a super-twisting algorithm in 6
DOF.,” IFAC-PapersOnLine, vol. 51, no. 29, pp. 311 – 316, 2018. 11th
IFAC Conference on Control Applications in Marine Systems, Robotics,
and Vehicles CAMS 2018.

[17] L. M. G. Johannessen, “Robot Dynamics with URDF & CasADi,”
Master’s thesis, Norwegian University of Technology and Science,
Trondheim, Norway, 2019.

http://www.orocos.org/kdl
http://www.orocos.org/kdl
http://pybullet.org

	Introduction
	Rigid Body Dynamics Libraries
	Rigid Body Dynamics

	Spatial Notation
	Spatial Transforms
	Spatial Inertia
	Motion and force vectors


	Rigid Body Dynamics Algorithms
	The Recursive Newton-Euler Algorithm
	The Articulated Body Algorithm
	The Composite Rigid Body Algorithm

	Results
	Numerical Results
	Timing Results
	Derivatives Timing

	Conclusion
	References

